
Detection and Resolution of Motion Conflict in Visual Inertial Odometry

¹Worcester Polytechnic Institute, ²CSIRO

Benzun Pious Wisely Babu¹, David Cyganski¹, James Duckworth¹, Soohwan Kim²

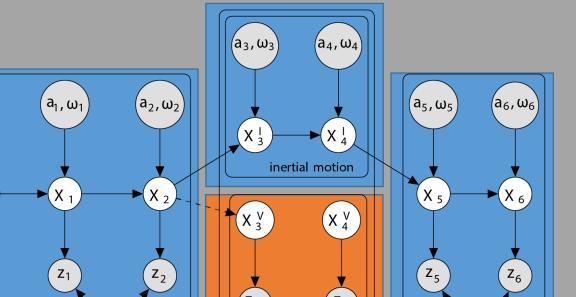
1 ABSTRACT

- Similar to human motion sickness, Motion Conflict is the disagreement between measurements in a multi-sensor device.
- We present Motion-Conflict aware Visual Inertial Odometry (MC-VIO) algorithm that combines detection and resolution.
- Motion conflict is described using a hidden Markov model with additional states.
- Experimental results show that our method reduces the increase in absolute tracking error by 80% for real-life scenes with motion conflict.

4 DETECTING MOTION CONFLICT

- To determine which state corresponds to X_{m-} and when to apply • the motion conflict interval conflict resolution, motion $[t_{m-}, t_{m+}]$ needs to be estimated.
- Based on the discrepancy of the estimated poses:

$$\delta_{MC} = \|\mathbf{\hat{p}}_k^V - \mathbf{\hat{p}}_k^I\|_{\Sigma}$$


Based on the landmarks l_i in the map, a per-landmark error δl_i is converted to per frame M_r .

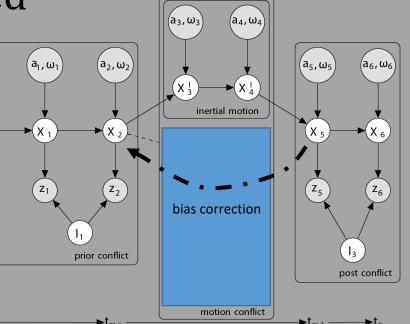
2 MOTION CONFLICT IN VIO

- Ego-motion is observable by both external (camera) and internal (IMU) sensors.
- When multiple motions are observed by sensors, determining which of these motions are consistent with ego-motion is essential.
- We term this as *motion conflict*. \bullet
- Example of motion conflict A moving camera in car sees static landmarks (green) and moving landmarks (red). Each group produce a different motion estimate.

3 MOTION CONFLICT MODEL

- A generalized Hidden Markov Model (HMM) for VIO in scenes with motion conflict.
- During motion conflict interval $[t_{m-}, t_{m+}]$ the state of the system is forked.

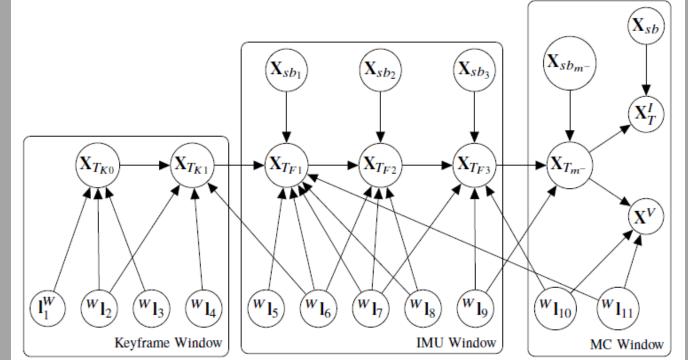
visual motio


motion conflic

 $\delta_{l_j} := \sum_{i \in \mathcal{C}} \left(\mathbf{z}_{ij} - h(\mathbf{X}_i^I, \mathbf{l}_j) \right) \qquad M_r := \frac{\# \text{ landmarks without conflict}}{\# \text{ landmarks}}$ # landmarks

5 RESOLVING MOTION CONFLICT

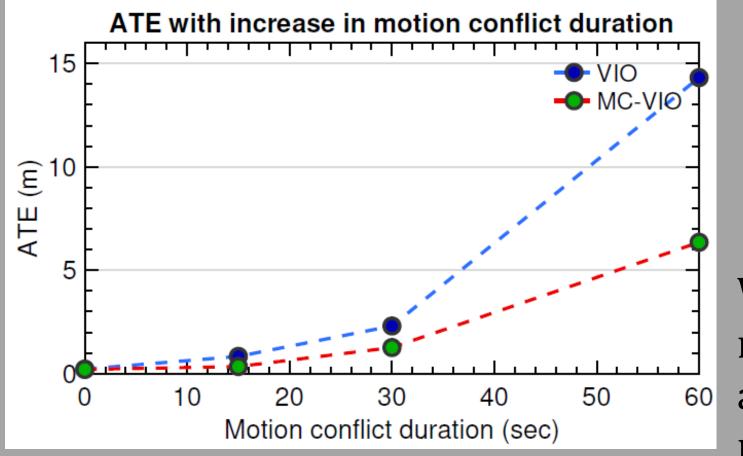
- After t_{m+} , X_I is propagated to estimate states in $[t_{m-}, t_{m+}]$.
- X_{m+} is the state estimate with visual measurements after t_{m+} .
- The states in interval $[t_{m-}, t_{m+}]$, are updated using back-propagation of state X_{m+}
- IMU dominated motion conflict resolution (Mode 1):
 - The bias post motion conflict $b_{a_{m+}}$ is interpolated backwards to estimate bias in interval $[t_{m-}, t_{m+}].$


$$\mathbf{b}_{a}{}^{I}(t) = \frac{t - t_{m^{-}}}{t_{m^{+}} - t_{m^{-}}} (\mathbf{b}_{a_{m^{+}}} - \mathbf{b}_{a_{m^{-}}}) + \mathbf{b}_{a_{m^{-}}}$$

- Selective motion conflict resolution (Mode 2):
 - Visual measurements from landmarks that are consistent with the X_I are additionally to estimates states in interval $[t_{m-}, t_{m+}]$.

6 MC-VIO

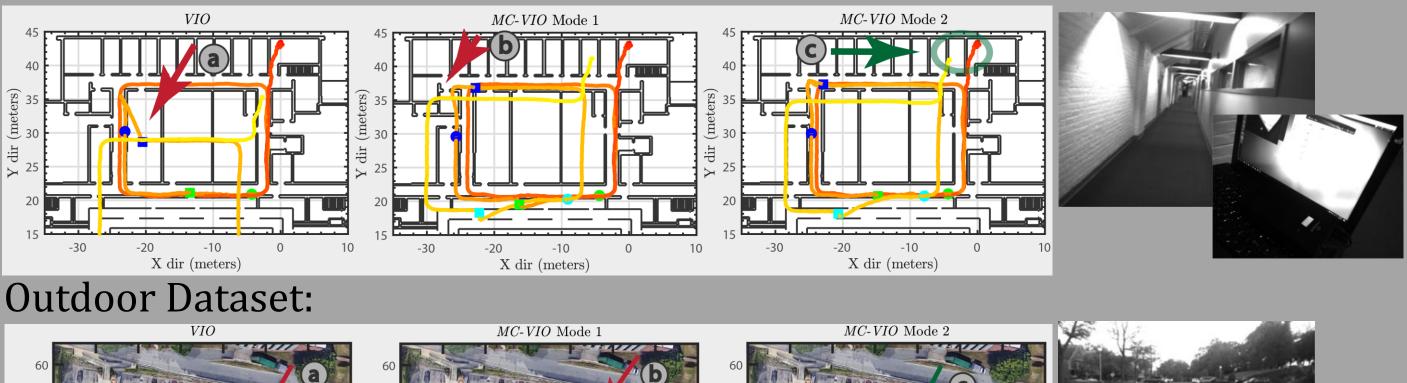
• The detection and resolution techniques are combined to implement Motion Conflict aware Visual Inertial Odometry (MC-VIO) • In keyframe window, marginalized states and the associated landmarks are maintained.

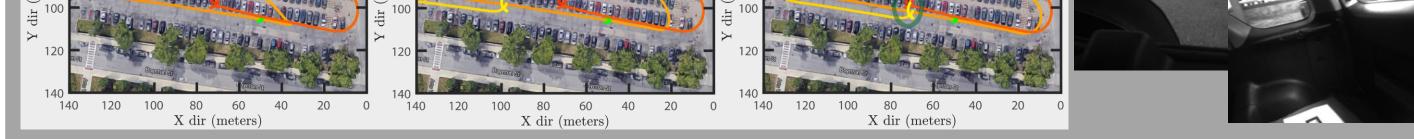

246

- We perform separate estimation of states X_k^V and X_k^I using X_{m-} as a priori $\mathbf{X}_{k}^{V} := \begin{bmatrix} \mathbf{p}_{V}^{VS^{\top}}, & \mathbf{q}_{VS^{\top}}, & \mathbf{l}_{0}^{V^{\top}}, & \dots, & \mathbf{l}_{n}^{V^{\top}} \end{bmatrix}_{k}^{\top} \in \mathbb{R}^{3} \times S^{3} \times \mathbb{R}^{4n}$ $\mathbf{X}_{k}^{I} := \begin{bmatrix} \mathbf{p}_{W}^{WS^{\top}}, & \mathbf{q}_{WS}^{\top}, & {}^{S}\mathbf{v}_{WS}^{\top}, & \mathbf{b}_{g}^{\top}, & \mathbf{b}_{a}^{\top} \end{bmatrix}_{L}^{\top} \in \mathbb{R}^{3} \times S^{3} \times \mathbb{R}^{9}$ $\hat{\mathbf{X}}_{k}^{V} = \underset{\mathbf{X}^{V}}{\operatorname{argmax}} \operatorname{P}(\mathbf{X}_{m^{-}}) \operatorname{P}(\mathbf{X}_{k-1}^{V} \mid \mathbf{X}_{m^{-}}) \operatorname{P}(\mathbf{X}^{V}_{k} \mid \mathbf{X}_{k-1}^{V}, \mathbf{z}^{i,j,k})$ $\hat{\mathbf{X}}^{I} = \operatorname{argmax} \operatorname{P}(\mathbf{X}_{m^{-}}) \operatorname{P}(\mathbf{X}_{k-1}^{I} \mid \mathbf{X}_{m^{-}}) \operatorname{P}(\mathbf{X}_{k}^{I} \mid \mathbf{X}_{k-1}^{I}, \mathbf{u}_{k})$
- In IMU window, consecutive frames without marginalization are • maintained.
- MC window is only maintained when motion conflict is detected.

7 QUANTITATIVE RESULTS

Evaluation of MC-VIO on motion conflict simulated EuROC dataset


EuROC Dataset	ATE [m]			RPE $[m/s]$		
	VIO	Mode1	Mode2	VIO	Mode1	Mode2
mean	0.934	0.349	0.365	0.334	0.254	0.244
std.	0.778	0.179	0.178	0.218	0.152	0.157


MC-VIO reduces increase in ATE by 80% and RPE by 60% for scenes with motion conflict, in comparison to the state-of-theart reference VIO^[1]. With MC-VIO, the ATE grew much slower than reference VIO ⁶⁰ algorithm^[1] with increase in motion conflict duration.

8 QUALITATIVE RESULTS

Indoor Dataset:

[1] Stefan Leutenegger et al. Keyframe-based visual-inertial odometry using nonlinear optimization. The International Journal of Robotics Research, 2015.

a Motion conflict creates large drift in reference VIO^[1] **b** MC-VIO – Mode 1produces resultant trajectory that had reduced drift **c** MC-VIO – Mode 2 produces resultant trajectory that had least drift.

9 CONCLUSION

In visually and inertially challenging environments, if **motion conflict** is not handled correctly, large irreversible errors occur in Visual Inertial Odometry.

A generalized HMM can be used to model motion conflict. Novel approaches for detection and resolution were combined in our Motion Conflict aware Visual Inertial Odometry (MC-VIO) algorithm. Results indicated that MC-VIO reduced the increase in ATE by 80% and RPE by 60%.

