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 Similar to human motion sickness, Motion Conflict is the * To determine which state corresponds to X,,_and when to apply
disagreement between measurements in a multi-sensor device. motion conflict resolution, the motion conflict interval
 We present Motion-Conflict aware Visual Inertial Odometry (MC-VIO) |t,,—, tm,+ |needs to be estimated.
algorithm that combines detection and resolution.  Based on the discrepancy of the estimated poses:

* DMotion conflict is described using a hidden Markov model with

) — ||p) —
additional states. MC Hpk pkHE

* Experimental results show that our method reduces the increase in » Based on the landmarks /; in the map, a per- landmark error §1; is
absolute tracking error by 80% for real-life scenes with motion converted to per frame M,..
conflict. . .
51, = Z (Zij ~ (X {7 lj)) M, — # landmarks without conflict
v pype # landmarks

 Ego-motion is observable by both
external (camera) and internal
(IMU) sensors.

* When multiple motions are
observed by sensors, determining
which of these motions are
consistent with ego-motion is
essential.
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» Aftert,, ., X; is propagated to estimate statesin [t,;,_, t; 4]

* X,,. 1s the state estimate with visual measurements after t,,, ..

* The states in interval [t,,,_, t,;;+], are updated using back-propagation of
state X+

 IMU dominated motion conflict resolution (Mode 1):
* The bias post motion conflict b,_ , is interpolated

We term this as motion conflict. backwards to estimate bias in interval ® ® 2
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e Example of motion conflict - A moving camera in car sees static [t tm+].
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3 * Selective motion conflict resolution (Mode 2): . i)
. : + Visual measurements from landmarks that are consistent with the X I
- A generalized Hidden Markov D are additionally to estimates states in interval [t,,_, t,,,+]-
Model (HMM) for VIO in scenes D R DD
with motion conflict. AT nertal moron T 6
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|t,,—, t,+ ]| the state of the system o o o o  The detection and resolution &) (o)
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; v * In IMU window, consecutive frames without marginalization are
XY =aremaxP(X,, ) P(XY , | X, VP(XV, | XV ,, z"9F e ’
k %{V ( m ) ( k—1 | m ) ( k | k—1 ) maintained.
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X" = argmax P(X,-) P(Xj_y | X ) P(X' | Xy up) « MC window is only maintained when motion conflict is detected.
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Evaluation of MC-VIO on motion conflict simulated EuROC dataset Indoor Dataset:
ATE [m] RPE [m‘fs] 5 Vo _ . — Mt::_wg Mode 1 _ . R - MC-VIO Mode 2 :
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[ o vcvie’] | DY 80% and RPE by 60% for Outdoor Dataset:
l -1 scenes with motion conflict, in
e0r 7 1 comparison to the state-of-the-
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O wnﬂlc?;“duraﬂoiisec) 0 e0 algorithm!* with increase in a Motion conflict creates large drift in reference VIOl
motion conflict duration. b MC-VIO - Mode 1produces resultant trajectory that had reduced drift
[1] Stefan Leutenegger et al. Keyframe-based visual—inertial odometry using nonlinear optimization. The International : :
Journal of Robotics Research, 2015. ¢ MC-VIO - Mode 2 produces resultant trajectory that had least drift.
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* Invisually and inertially challenging environments, if motion conflict is not handled correctly, large irreversible errors occur in Visual Inertial Odometry.
* A generalized HMM can be used to model motion conflict. Novel approaches for detection and resolution were combined in our Motion Conflict aware Visual
Inertial Odometry (MC-VIO) algorithm. Results indicated that MC-VIO reduced the increase in ATE by 80% and RPE by 60%.
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