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Abstract—This paper describes the development and evalua-
tion of an indoor localization algorithm using Visual Simultaneous
Localization and Mapping (VSLAM) aided by gyroscope sensor
information. Indoor environments pose several challenges which
could cause a vision only system to fail due to tracking errors.
Investigation revealed significant feature loss in a vision only
system when traversing plain walls, windows and staircases.
However, the addition of a gyroscope helps in handling such
difficult conditions by providing additional rotational informa-
tion. A portable system consisting of an Inertial Measurement
Unit (IMU) and a stereo camera has been developed for indoor
mapping. The images and gyroscope rates acquired by the
system are stored and post-processed using a new Gyroscope
Assisted Scalable Visual Simultaneous Localization and Mapping
Algorithm (GA-ScaViSLAM). The algorithm has been evaluated
for data-sets collected at Atwater Kent building, Worcester
Polytechnic Institute. This algorithm was found to be more robust
in comparison to the vision only system. The Ga-ScaViSLAM was
found to have an error (rms) of 0.6 m in the indoor environments
tested over a total path length of 77m.

I. INTRODUCTION

Navigation in an unknown indoor environment requires
reliable localization. Unlike outdoor environments, there is
limited assistance from external agents such as GPS which
provide information about the absolute position of the system.
Simultaneous Localization and Mapping (SLAM) was devel-
oped to address the issue of localization in an environment
where pre-cached maps and absolute pose information are not
available.

Vision based SLAM (VSLAM) has gained popularity due
to the availability of inexpensive cameras and low cost high
speed processors. Most VSLAM algorithms rely on repeated
observation of distinct features to determine the camera pose.
The stereo disparity observed using nearby features provides
information about translation of the camera while the disparity
due to distant features provides information about the orien-
tation of the camera.

Howeyver, there can be loss of features in indoor environ-
ments due to changing lighting conditions and textureless
scenes. This is prominent while navigating through scenes
containing plain walls, windows and stairs. This feature loss
often leads to a tracking failure which degrades the VSLAM
performance. The effect is also amplified while the system is
taking a turn in indoor corridors due to sudden changes in both
the sparsity and trajectory speed of the available features.
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Sensors that augment vision can be used to assist in over-
coming this tracking failure. Vision based algorithms are good
at handling changes over long duration but fail to correctly
observe sudden rotation rates. On the other hand, a gyroscope
measures accurate angular rates over short period about its
axis but drifts considerably over a longer period. Hence, a
combination of vision and gyroscope should complement each
other and provide more robust localization including handling
turns inside the building.

In this paper, we present the Gyroscope Assisted Visual
Scalabe Localization and Mapping (GA-ScaViSLAM) algo-
rithm which improves robustness and accuracy of the existing
scalable visual simultaneous localization and mapping algo-
rithm ScaViSLAM[1]. A huge improvement in localization is
achieved with the addition of a gyroscope. The algorithm is
tailored for indoor operation and is capable of localization at
stairs, narrow corridors, and other common indoor conditions
that can cause problems while reducing long term orientation
drifts.

The following section gives a brief overview of the existing
techniques. A more complete description of the challenges
encountered in indoor SLAM is presented in section III. The
system design developed for the combined vision and gyro-
scope system is presented in section IV. Next, the approach
developed to integrate the stereo system with the gyroscope
from an algorithm point of view is discussed in Section V. It
is followed by Section VI which discusses the experimentation
carried out to validate the system performance. Finally Section
VII presents a summary of the results.

II. BACKGROUND

Filtering and optimization are two main approaches to visual
SLAM. The filtering approach performs estimation of the
system location and map using a non-linear filter such as an
Extended Kalman Filter (EKF) [2][3] while an optimization
approach uses techniques such as Bundle Adjustment (BA)
[4] or Iterative Closest Point (ICP) [5] to solve for the state
of the map and the camera.

Civera et al. [6] demonstrated visual SLAM using a monoc-
ular camera for augmented reality applications. It used an
extended Kalman filter to track the features in the map. Since
the number of states of the filter increases with the number of
features tracked, it does not scale well to large environments.



Furthermore it does not have the ability to perform loop
closure.

Bundle adjustment is a concept used in photogrammetry
to estimate the ego motion and position of features in a small
scene [7][8]. It can be generalized as a non-linear optimization
approach. In recent years there has been a shift towards
optimization based techniques for solving SLAM. Agrawal
[9], Lu and Milios [10] demonstrated representing SLAM as
a pose graph optimization problem is efficient and robust to
solve loop closure.

Klein and Murray [11] introduced a technique called Paral-
lel Tracking and Mapping (PTAM) that separated SLAM into
two separate threads. In one of the threads, the camera motion
is estimated while the other thread handles optimization to
determine the feature positions. They were able to achieve
real-time performance by using a subset of the captured image
frames called keyframes. PTAM provides good mapping over
a small area but is not capable of handling large areas.

Konolige and Agrawal [12] used frame matching to demon-
strate a visual SLAM technique that performs optimization
over the keyframe poses. It demonstrates the ability to perform
loop closure with a reduced skeleton set of the frames.
They store only the relative non-linear constraint between the
keyframes thus allowing them to track within a larger area
with less error.

Strasdat et al. [1] introduced Scalable Visual SLAM (ScaV-
iSLAM) aimed at providing a solution that can be used for
both large scale environments and small scale objects. It
merged frame based SLAM that performs well over a long
range with bundle adjustment which is capable of providing
precise localization and mapping over a small range. ScaViS-
LAM performs a combined optimization over two windows.
However, it fails in situations where there is tracking failures
due to conditions which often arise in the indoor environment.

Leutenegger et al. [13] presented a close integration of
optimization based SLAM with an Inertial Measurement Unit
(IMU). They were able to demonstrate real time mapping with
tight coupling between the IMU and the camera is available.
They had a larger number of internal states to optimize and
these demonstrations were limited to wide corridors with
straight paths in which feature sparsity and trajectory speeds
are not a dominant issue.

Chameleon [14] uses stereo camera measurement fused with
an Inertial Measurement Unit for navigation and mapping.
They use an Extended Kalman filter based SLAM. They show
successful navigation and mapping but do not to perform loop
closure. In situations where there is considerable feature loss
the system drifts.

III. INDOOR SLAM - POTENTIAL PROBLEMS

Indoor localization using vision is plagued by conditions
where the loss of features can lead to catastrophic failure of
the VSLAM algorithm. Indoor imaging conditions are highly
dependent on the layout and lighting within the building. A
visual SLAM solution capable of handling indoor localization
needs to overcome three practical challenges presented below.

A. Plain Walls

Presence of texture in scenes is important for computer
vision algorithms for feature identification and tracking. Plain
walls and repeating brick structures (Fig. la) are common
indoor conditions lacking texture. Lack of distinct texture
results in poor correspondence and wrong disparity being
calculated (Fig. 1b). This prevents accurate localization and

mapping.

(a) Wall near a turn

(b) Disparity image of wall

Fig. 1: A noisy disparity image is generated for a plain wall
by a stereo disparity algorithm. Ideally the disparity image
should have appeared as a uniform linear gradient.

B. Windows

Non-uniform brightness levels violate the constant intensity
assumption that feature detection and tracking algorithms
rely on. Sudden changes in lighting near windows affect the
brightness of the images and causes clipping at either white
or black intensity extremes. Thus based on the exposure time,
either the indoor environment (Fig. 2a) or the scene outside
the window (Fig. 2b) is prominent. This sudden change in the
imaging condition can lead to loss of features being tracked
and introduce error into the system.

(a) Exposure tuned to indoor light- (b) Exposure tuned to outdoor
ing lighting

Fig. 2: The dramatic change of intensity levels of features and
resulting clipping observed based on the camera exposure.

C. Staircase

Large depth variations in a local image neighborhood
combined with significant camera motion prevents success-
ful tracking. Staircases have features which lie on a plane
nearly perpendicular to the imaging plane (Fig. 3). As this
plane approaches the scene, the distribution of the features
gets stretched or features disappear between video frames.



Feature tracking algorithms such as cross correlation perform
poorly as they depend on the feature distribution remaining
approximately constant.

(a) Facing a staircase.

(b) moving down a staircase

Fig. 3: The neighborhood of features near staircase changes
dramatically as we climb up or down the stairs.

The challenges described are more catastrophic when en-
countered near turns where there is a sudden scene change
(high feature velocity) which compounds the feature loss.
These challenges are fundamental to image tracking in the
indoor environment and can be overcome with additional
properly integrated sensors.

Since a gyroscope is capable of providing additional obser-
vation during a turn, an Inertial Measurement Unit (IMU) can
be added to complement the vision based system.

IV. SYSTEM DESIGN

The system we designed consists of a custom hardware
created using a Bumblebee XB3 camera attached to a NavChip
Inertial Measurement Unit (Fig. 4). A Next Unit of Computing
processing unit, consisting of a solid state storage device is
used to collect data from the IMU and the stereo camera.
The processor communicates with the image trigger circuit
using a serial port to set the desired trigger pulse duration.
The stereo camera is configured to perform image capture
on trigger pulses. The stereo images are captured using the
narrow base-length (12cm) camera pair. The narrow stereo
camera pair allows better disparity at a short range. The images
are captured at 640x480 resolution and transmitted to the
computer using a Firewire 800 connection.

A. Stero Camera Model

The stereo camera observations are modeled as a three
dimensional vector where the first two components u;,v;
represent the pixel location as observed by the left camera.
The third component u, is the row measurement in the right
camera frame.
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In equation 1, the focal length (f;, f,) and the camera cen-
ter (p1, p2) is obtained using camera calibration. X}, represents

a feature observed in the world coordinate frame.

7

Fig. 4: The handheld system used to capture the data for the
system. A - Bumblebee XB3 , B - NavChip IMU, C - Intel
Next Unit of computing

B. Gyroscope Model

The gyroscope rates (6) are modeled as three dimensional
rotation about its axis. If (6,,6,,0,) describe the rotation
about the three axis (x,y, z), 2 describes the gyroscope rate
observed in the camera frame. The rotation rates are assumed
to be corrupted by the bias noise (ny).

. | O + 1,
6. = q2r(Q™) + | 6, +m, @)
0, + N,

The quaternion (Q™") describes the rotation between the
IMU and the camera frame. The function ¢2r() converts a
quaternion to rotational matrix.

C. Coordinate frames

There are three main coordinate frames in the system (Fig.
5):

1) World frame (F) - The base frame with respect to
which all the elements in the environment are defined.

2) Camera frame (F.) - The frame with respect to the left
camera center. All the features observed by the camera
are represented in this coordinate frame initially.

3) IMU frame (F;) - The frame with respect to which the
IMU measurements are observed initially.

D. Calibration

A one time calibration procedure is need to determine
the transformation between the IMU and the camera. The
transformation T, consist of a rotation quaternion ()

C

mu
and a displacement vector df,,,,. Since we are only interested
in the gyroscope rates, the rotation quaternion between the
IMU and the camera (Q5,,,) is found using the calibration
technique demonstrated in [15]. Also every time the system is
started, the gyroscope bias is estimated by keeping the system

stationary for a 500 frame capture (approx 50 seconds).
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Fig. 5: Coordinate Frames

V. INTEGRATING GYROSCOPE

Stereo images are captured using the narrow base-length
stereo camera pair while the rotational rates are captured
using the 200Hz ( f;y,.) gyroscope. To synchronize the camera
with the IMU, a trigger is generated for every n gyroscope
observations as described in Section IV. This trigger is used
to initiate a stereo image capture at rate f; (Eq.3).

200
I'mage capturerate(f;) = — Hz 3)
n

In indoor environments, automatic exposure helps to capture
scenes with varying lighting conditions better but this can lead
to loss of IMU trigger in scenes with low lighting conditions.
Since the frame rate is determined by the IMU trigger rate
(Eq.3), the camera exposure time (.,,) needs to be below the
IMU trigger period (Eq.4) to ensure that an image frame is
generated for every IMU trigger.

1
EzposureTime : tegp < — (@)
t
The images and the gyroscope observations are captured
using independent driver threads and stored for offline pro-
cessing (Fig. 6). This ensures that there is no loss of data
from the sensors.

Storage(HDD)

Fig. 6: The data flow in the system

A. Threading Architecture

Ga-ScaViSLAM uses a similar threading architecture as
proposed in ScaViSLAM[1] (Fig. 7). The algorithm is defined
in two logical blocks: the front end where the features are
detected and initialized and a back end where non-linear
optimization is carried out to perform mapping.
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Frame Data Stack
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Loop Closure Stack

Place Recognizer

Fig. 7: The threading architecture used in Ga-ScaViSLAM

The algorithm launches multiple separate threads for near
real time processing. The frame grabber thread loads the stereo
image pair into the frame data stack. The stereo front end
uses the frame data from the stack and calculates the disparity
images using semi-global block matching. The back end thread
performs double window optimization [1]. A place recognizer
thread is used to find loop closure and incorporate the loop
constraints into the optimization. Finally a display thread is
used to provide visual feedback. The gyroscope rates are
incorporated both in the front end and the back end of the
stereo SLAM system.

B. Gyroscope in Front end

The objective of the front end is to detect features and
perform an initial estimate of the pose of the camera. The
features from a frame are extracted using a grid based FAST
[16] algorithm. The pose of a keyframe is determined by the
dense tracking algorithm described below. The pose estimation
in the front end is used as an initial estimate in the back end
convex optimizer. Since a convex optimizer only produces the
local minima and not the global minima the initial estimate
needs to be close to the actual pose. In an indoor environment
the estimation of orientation by a vision only system is poor
due to the lack of distant features. In Ga-ScaViSLAM (Fig. 8)
the gyroscope is used to assist the front end in determining the
orientation. This orientation quaternion between two frames
(k,k+n) can be calculated using equation 5.

k+n
Qi =Qutn* ] @i )

i=k
1) Dense Tracker: The dense tracker [17] uses intensity
consistency to estimate the transform between the frames. All
the points in the images are used to produce a estimate of
the transformation between two frames. It uses the Levenberg
Marquardt (LM) algorithm to find the transformation that
minimizes the back projection error of the points in the scene.
The gyroscope orientation estimate is used to initialize the
LM algorithm, thus making the dense tracker more robust and

preventing it from getting stuck in local minimum.
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Fig. 8: The front end in Ga-ScaViSLAM

2) Keyframe Generation: A better accuracy can be achieved
by tracking a greater number of features in the environment
[18]. In narrow corridors and corners a large numbers of
features go out of field of view very quickly. But, only a subset
of the total frames observed, these are called keyframes. They
are used in the back end for optimization. To capture as many
features as possible during turns, Ga-ScaViSLAM increases
the number of keyframes generated during turns to prevent
the back end from failing.

C. Gyroscope in Back end

The back end (Fig. 9) is responsible for generating local-
ization information based on the motion from the beginning
of the operation of the system. The back end uses a graph
that maintains the constraints and relationships between the
keyframes sent by the front end. The keyframes based on
the history are subdivided into inner and outer window. All
optimization is carried out using the g2o [19] optimization
package.

1) Inner Window: In the inner window the optimization
function tries to minimize the feature re-projection error
combined with the orientation error between the gyroscope
and the visual system.

2) Outer Window: In the outer window a pose-pose con-
straint is enforced. Hence the optimization function tries to
minimize the predicted transformation with the transformation
observed from different keyframes in the path travelled by the
system. Additionally, the orientation constraint as defined by
the rotational change observed by the gyroscope between the
keyframe is added as a constraint to the outer window.
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Fig. 9: The back end in Ga-ScaViSLAM

3) Objective Function: After adding the constraints from
the inner and the outer window, the objective function is
represented by the equation 6. The first summation mini-
mizes the re-projection error, the second summation min-
imizes the relative pose between the two frames where
Vij = logSE(g)(T]? * Ty T; ). finally the third summation
minimizes the error between the quaternion rotation given by
the IMU and the observed quaternion rotation between two
keyframes.

X2 = Z(zik — ﬁ(TZ, Xk))2 + ZvijApvij
Zik Tij
+ > exp(Quy + Q™) Ag exp(Qiy x Q™) (6)
Qij

4) Loop Closure: In the back end, loop closure using
place recognition proposed by Strasdat et al. [1], is used. If
loop closure occurs, an additional constraint is added to the
SLAM graph. Again optimization is carried out to improve
the localization accuracy.

VI. EXPERIMENTATION AND RESULTS

All data-sets were collected using the hand-held device
shown previously in Fig. 4. A stereo image was generated
at every 20" IMU observation (n = 20). The image capture
rate was 10Hz.

The data-sets were captured inside the Atwater Kent build-
ing. The experiment was conducted over three floors with
varying lighting conditions. The first and the second floor have
wide corridors with windows while the third floor has narrow



corridors without windows. The stairs between the floors are
moderately lit and have plain walls.

In each of the experiments an initial idle time of around
500 frames was used to determine the bias for the gyroscope
calibration. We compare the performance of the vision only
ScaViSLAM system [1] with Ga-ScaViSLAM.

A. Ground Floor Data-set

This data-set was collected in the ground floor of Atwater
Kent building. Fig. 10a shows the general path traveled over-
layed on the floor plan. The data-set is characterized by wide
well-lit corridors. A total distance of approximately 80m was
traveled during the test.

The localization result overlayed on the floor plan is pre-
sented in the Fig. 10b. In the vision only system, the turns
are estimated poorly. Also there is a break in tracking due to
change in lighting near the second turn where windows are
located. Loop closure occurs at the end, but the propagated
correction is not able to compensate for the tracking loss that
occurred.

Fig. 10c shows the path generated by Ga-ScaViSLAM. We
observe a more accurate path, that accurately tracks turns and
performs a successful loop closure.

Atwater Kent — 15 Floor

Fig. 10: The path traveled in Atwater Kent ground floor (a).
The path generated by vision only system is overlayed on the
ground floor plan (b). The path generated by Ga-ScaViSLAM
overlayed on the ground floor plan (c).

B. Two Floors Data-set

To perform a test in a larger environment, we start at the
second floor corridor, climb up the stairs to the third floor,
make a loop on the third floor and return back to the second
floor climbing down the stairs to complete the loop. Fig. 11
shows the path travelled (approx 160m). In addition to being
longer than the previous data-set it also has varying lighting
conditions, stairs and narrow corridors.
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Fig. 11: The path travelled in the (a) second floor, (b) third
floor.
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Fig. 12: The path generated by vision only system overlayed
on the second floor (a). The path generated by vision only
system overlayed on the third floor (b). The path generated by
Ga-ScaViSLAM overlayed on the second floor (c). The path
generated by Ga-ScaViSLAM overlayed on the third floor (d).

Fig. 12a, 12b shows the vision only system fails completely
while traversing stairs and only completes loop closure on the
third floor. It fails to recognize the loop closure that occurs in
the second floor.

Fig. 12c, 12d shows the path generated by Ga-ScaViSLAM.
It does not have the same failures and is able to achieve both
vertical and horizontal loop closure.
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Fig. 13: The elevation result in the vision only system(a) and
the elevation result in the Ga-ScaViSLAM(b).

Fig. 13 shows the result of the path generated by both
the systems while climbing stairs. We observe that the vision
only system has huge drifts while Ga-ScaViSLAM is able to
traverse the stairs without much loss of accuracy.



C. Third Floor Data-set

Finally to evaluate the position accuracy, this dataset was
collected with ground truth data points that were surveyed
on the floor. Fig. 14 shows the path traveled while collecting
this data-set. This data-set has narrow poorly lit corridors with
texture-less walls.

Fig. 14: Red - ground truth, Blue - path generated. The path
travelled in the 3rd floor(a). The path generated by vision only
system overlayed on the ground truth(b). The path generated
by the Ga-ScaViSLAM overlayed on the ground truth(c)

Fig. 14b Using the vision only system, the algorithm fails
at the third turn where there is a texture-less wall. This break
in the algorithm is due to failure in tracking as discussed in
the section III. The path traversed by the vision only system
had an RMS error of 1.85m. The RMS error for the traversed
path was calculated for the system after aligning the map.

Fig. 14 shows the path generated with the Ga-ScaViSLAM.
The surveyed points and path generated align very well
indicating small error from the ground truth. After aligning
the map, an RMS error of 0.6m is observed for the narrow
indoor corridor loop with a total travelled path distance of
77m.

VII. CONCLUSION

The difficulties in indoor visual SLAM are presented. A
portable hardware system for indoor mapping using a stereo
system and gyroscope capable of overcoming the difficulties
was developed. The Gyroscope assisted Scalable Visual Si-
multaneous Localization and Mapping(Ga-ScaViSLAM) algo-
rithm combined images and gyroscope information to demon-
strate robust indoor localization. The gyroscope information
was successfully used at both feature extraction front end
and optimization back end. Experimentation was carried out
using real data collected from a multi-floor indoor environ-
ment. It has successfully demonstrated the ability to perform
localization and mapping in building environments with stairs,
windows and plain walls. Compared to a vision only system,
the Ga-ScaViSLAM is more robust. Additionally, it also
produces more accurate maps with a RMS error of only 0.6m

in a narrow dimly lit corridor loop over a path distance of
77m.
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