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Abstract—A tight coupling between perception and manipu-
lation is required for dynamic robots to react in a timely and
appropriate manner to changes in the world. In conventional
robotics, perception transforms visual information into internal
models which are used by planning algorithms to generate trajec-
tories for motion. Under this paradigm, it is possible for a plan to
become stale if the robot or environment changes configuration
before the robot can replan. Perception and actuation are only
loosely coupled through planning; there is no rapid feedback
or interplay between them. For a statically stable robot in a
slowly changing environment, this is an appropriate strategy for
manipulating the world. A tightly coupled system, by contrast,
connects perception directly to actuation, allowing for rapid
feedback. This tight coupling is important for a dynamically
unstable robot which engages in active manipulation. In such
robots, planning does not fall between perception and manipula-
tion; rather planning creates the connection between perception
and manipulation. We show that Simultaneous Localization and
Mapping (SLAM) can be used as a tool to perform the tight
coupling for a humanoid robot with numerous proprioceptive and
exteroceptive sensors. Three different approaches to generate a
motion plan for grabbing a piece of debris is evaluated using for
Atlas humanoid robot. Results indicate higher success rate and
accuracy for motion plans that implement tight coupling between
perception and manipulation using SLAM.

I. INTRODUCTION

A conventional robotics system relies broadly on three
subsystems - perception, planning and actuation. Perception
receives raw information about the world from sensors and
extracts meaningful internal models. Planning uses the models
from perception to generate sets of trajectories for motion.
Finally, actuation performs controls to ensure that the robot
achieves the desired trajectory. This approach is successful in
a statically stable robot with slowly changing environment that
can be predicted reliably.

However, in a tightly coupled system, actuation is directly
controlled by perception and perception is directly connected
to actuation. Planning provides the overall goal for the system
and affects both perception and actuation indirectly. In this
manner the planner can produce motion trajectories with less
accuracy and more robustness.

In order to perform manipulation tasks in an active envi-
ronment the robot needs to have robust plans that account
for changes both in its configuration and the environment.

Fig. 1: The Atlas robot performing debris extraction.

In such a condition, tight interaction between perception and
manipulation can be used to create a dynamic planner.

Simultaneous Localization and Mapping (SLAM) [1] is a
common technique used in mobile robots to perform estima-
tion of both the robot position and the environment. Propri-
oceptive information on the robot’s internal state, combined
with the estimated robot position and kinematics, provide an
overall estimate of the robot’s total state. The generated map
gives extroceptive information about the environment. The
proprioceptive information is observed at a higher rate and
is used for performing a reactive control of the robot while
the extroceptive is slow and provides goals for manipulation
tasks. Hence we propose that SLAM is a suitable choice for
tightly coupling perception and manipulation for generating
motion plans.

In this paper we present the application of Visual SLAM
as a tool for tightly coupling perception and manipulation
tasks in a humanoid robot. We demonstrate our approach
through an example task of extracting a piece of debris. We
examine the success of the three different models of motion



plan generation:
• a conventional static motion planner,
• a dynamic motion planner with loosely coupled visual

servoing which accounts for the environment but not the
change in the robot configuration, and

• a dynamic motion planner with tightly coupled visual
servoing that uses Visual SLAM to account for both the
environment and robot configuration.

The following section gives a brief background of exist-
ing approaches using reactive planning for manipulation in
humanoids. A brief overview of the Atlas robot is presented
in Section III. It is followed by an overview of the system
architecture in Section IV. The three motion plan created for
grabbing the piece of debris is presented in Section VI and
results of the application of the different motion plans are
presented in Section VII. A summary of results and future
work is presented in section VIII.

II. BACKGROUND

Chitta et al. [2] demonstrated a pick and place robotic
system that integrates both perception and manipulation in
a reactive manner. Even though sense-plan-act paragdim was
implemented, they showed that coupling perception with actu-
ation can produce robust manipulation capability in a cluttered
environment. In contrast to our approach, they used a statically
stable robot that does not have a dynamic control layer.

A reactive planning strategy for reach task in a cluttered
environment is demonstrated by Kanehiro et al. [3]. The reac-
tive planner works by performing both planning and execution
in parallel. Similar to Atlas, a full body motion planner [4]
was incorporated. In Simulation the robot was able to avoid
obstacles and reach a valve.

Stasse et al. [5] discuss the integration of walking with
planning in a humanoid HRP-2. Visual SLAM was used as
one of the tools for the integration of environment information.
The humanoid performed stacks of behaviour in parallel with
priority, similar to subsumption architecture [6].

G-SL(AM)2, introduced by Zhang and Trinkle [7], is mo-
tivated towards the problem of grasping while simultaneously
estimating the model and position of the object. The algorithm
uses a particle filter to perform estimation. The algorithm is not
real time and uses a camera external to the robot for making
observations. Our approach is real time and relies on a rotating
laser scanner mounted on the robot’s head.

Numerous approaches have been demonstrated in literature
[8] that use vision as a feedback for control. In our work we
have avoided the ”eye in the hand” approach as it required
modifications to the Atlas robot. Also the field of view of the
cameras on the Atlas robot is limited to a narrow region infront
of the robot, preventing approaches that require tracking a
visual fiducial on the robot’s hand using cameras.

The Atlas robot can be thought of a camera/laser scanner
on a kinematic chain. There have been approaches to perform
tracking of kinematic chains such as DART [9]. DART relies
on using a dense 3D sensor external to the robot. In our system,

the 3D sensor is on the head and can only observe parts of
the robot body.

Klingensmith et al. [10] presented an approach for real time
visual servoing by tracking the robot arm model. Through
optimization they were able to remove kinematic errors and
successfully demonstrated manipulation of objects. However,
Atlas head does not have a yaw degree of freedom restricting
our capability to implement a similar approach.

III. ATLAS ROBOT

Atlas is a hydraulically actuated humanoid robot developed
by Boston Dynamics. It has 28 degrees of freedom, and
each joint has closed loop force and position control. For the
research reported here, a Robotiq’s 3 finger adaptive gripper
was used as the end effector. A dynamic reactive controller
[4] is implemented to maintain the stability of the robot while
standing.

Fig. 2: The Atlas robot with the joint diagram. Observe that
only pitch degree of freedom is available at the neck.

Atlas has a Multisense SL head developed by Carnegie
Robotics, which consists of a spinning lidar with a stereo
camera pair for sensing the environment. The multisense head
generates stereo image pairs at 30 FPS, with a resolution of
1280x760. An on-board FPGA is used to generate disparity
maps at 30 FPS. The head also has a rotating lidar. The laser
scanner has a 270◦field of view with 0.25◦resolution. Each
lidar scan sweep along a single plane occurs at 40Hz.

The robot neck joint has only pitch degree of freedom. Yaw
can only be achieved using full body motion of the robot.
Observations from the joint sensors are available through a
transform tree that is generated using ROS [11]. A state
estimator [12] that uses the inertial measurement unit and the
joints encoders is used for full body control of the robot.

IV. SYSTEM ARCHITECTURE

Fig. 3 shows the system architecture. Atlas SLAM uses a
stereo camera pair to estimate the map of the world and the
position of the robot. The map generated by SLAM allows
the robot to be rooted onto a fixed coordinate frame. The
laser assembler uses the estimates of the robot position to
assemble a scan consistent with the fixed frame. Images from



the stereo camera pair are combined with the assembled laser
scan for object detection. Object detection is guided by the
user by scribbling on the displayed object of interest (Fig.
4a) in the image. Next, the major axis of the the object (Fig.
4c) is used to create candidate samples for the grasp selector
(Fig. 4d). The grasp selector uses the robot center of mass and
the stability of the trajectory to select suitable grasp from the
samples. Finally a complete trajectory is made based on the
motion planner. The motion planner will be discussed in more
detail in Section VI.

Fig. 3: The system architecture used for grabbing objects.

V. ATLAS SLAM

Atlas SLAM is based on the Scalable Visual Simultaneous
Localization and Mapping algorithm (ScaViSLAM) [13]. It
uses a bundle adjustment based technique to estimate the
position of the robot and the environment. The algorithm is
defined in two logical blocks: a front end where the features
are detected using FAST [14] and a back end where non-linear
optimization is carried out to perform mapping. The initial
position of the pelvis of the robot is used as the root frame,
that is, the origin for the map. The selection of this frame
allows us to easily integrate the SLAM information with the
kinematic pose estimates of the robot.

ScaViSLAM has near real-time performance, but in order
to improve speed and reduce computational load, An image
similarity measure allows us to skip processing unchanged
frames during periods when the robot is stationary, thereby
speeding up processing. The similarity measure is based on
the histogram of the images.

Since the robot requires information only about its imme-
diate environment, it is not necessary to have a large map in
memory. The double window optimization strategy [13] helps
in marginalizing the estimates from information that is not in
the immediate environment of the robot.

A. Laser Assembler

The laser assembler rectifies and projects the laser scan onto
the map coordinate frame of the robot. Each scan point is
transformed based on pose estimates generated by the SLAM.
These transforms are synchronized with the camera frame rate

and not the laser sweep rate, hence the transforms need to
be interpolated before being used for projection. Each scan
contains 1081 points. The spindle rotates at 5 RPS.

If T1 = ex1 ∈ SE(3) represents the pose of the laser
scanner at the start of a scan and T2 = ex2 ∈ SE(3) represents
the pose at the end of the scan. The transform that is applied
to each point on the laser scan is described by Equation 1.

T (i) = e
i

1081x1+
1081−i
1081 x2 (1)

The laser assembler stacks the rectified scans based on the
sweep angle after interpolation. A complete sweep is generated
when the laser scanner rotates by π radians.

Fig. 5: A complete 360◦sweep of the laser scan assembled as
one point cloud.

B. Visual Servoing

Kinematic error is observed in end effector frame when
the robot moves due to the drift in robots’ internal state
estimator and the tracking error in the controller. Hence the
final approach for the grasp is guided using visual servoing.

Visual servoing is performed to guide the robot hand to the
piece of debris using the laser scanner that is attached to the
robot head. From the assembled scan, the object of interest
is segmented. The segmented points are clustered to remove
outliers. The yaw and offset from the mean position of the
debris (Xdebris) and the robot hand (Xhand) is used to correct
the grasp approach.

yaw = atan(
δy

δx
) (2)

offset = ‖Xhand −Xdebris‖2 (3)
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Fig. 4: The different components involved in grabbing the piece of debris: a. The user marks the piece of debris using a green
scribble; b. The piece of debris is segmented using the object detector; c. The major axis of the debris is extracted from the
laser scan; d. The grasp selector generates sample grasps.

The yaw and offset calculated by equation 2&3 is used to
change the desired hand pose for the controller. In order to
reduce feedback delay the laser spindle is rotated at the max
rate of 5rps. The changes for desired end effector pose in task
space is used to update reference joint angles for the robot
using a gradient based Inverse Kinematics approach [4].

VI. APPROACH FOR GRABBING

Three different methods to generate motion plans were
carried out. In all the three plans, an extraction trajectory based
on a predefined path was executed once the robot grabbed
the object of interest. The motion plans are discussed briefly
below.

A. Static motion plan

In a static motion plan there is no feedback from perception
system once the plan is generated. The plan can be aborted
and a re-planning can be performed if the robot fails to execute
the plan correctly. Fig. 6 shows the process followed in the
plan.

Fig. 6: Static motion plan processing flow.

B. Dynamic motion plan with loosely coupled visual servoing

Dynamic motion plan with loosely coupled visual servoing
is performed assuming that only the robot’s hand move and the
rest of the body is stationary (Fig. 7). Since in this approach
there is no SLAM to provide feedback to the laser assembler,
the scans are not compensated for any motion that can occur
due to movement of the robot’s head (Fig. 8). This is similar
to the approach followed in a statically stable robot.

Fig. 7: Loosely coupled motion plan processing flow.

Fig. 8: The left image is the initial configuration of the robot.
The right image shows the configuration when the robot is
about to grab the piece of debris. Observe the change in the
position of the head which affects visual servoing.

C. Dynamic motion plan with tightly coupled visual servoing

The motion plan is made using feedback from Atlas SLAM
which estimates the robot configuration. The state estimator
of the robot is further improved by the SLAM estimates.
This allows the laser assembler to be fixed to a world frame
instead of a moving frame on the robot (Fig.8). The scans are
compensated for the movement of the entire robot when they
are assembled. This assembled scan is used for visual servoing
(Fig. 9).



Fig. 9: Tightly coupled motion plan processing flow.

VII. RESULTS

The experiments were carried out using the Atlas humanoid
robot. The task of grabbing a piece of debris was used to
evaluate the approach. An object detection module was used
to segment the piece of debris. A grasp based on the major
axis of the piece of debris was automatically selected by the
robot. The plan for grabbing the piece of debris was generated
using three different motion plans. Multiple attempts under
the three different motion plans were carried out. In each
attempt the robot position, object location and orientation
were chosen randomly. Here we discuss the results from the
different motion plans that were tested.

TABLE I: Results for grabbing a piece of debris

Motion Plan # Attempts # Success % Success Avg Com-
pletion
Time(sec)

Static plan 6 0 0% -

Dynamic plan with
loose coupling

20 11 55% 57.266

Dynamic plan with
tight coupling

20 16 80% 48.075

We evaluate the approach based on success rate, accuracy
and completion time. Accuracy and average completion time is
defined only for successful attempts. Table I shows the results
of the experiments. During grasping the robot must not perturb
the piece of debris until it closes the gripper as it can push
the piece of debris over. Hence we define accuracy as the root
mean squared error in the pose of the object from its initial
stationary pose before the object is extracted (Fig. 10). The
completion time accounts for the complete process of debris
removal.

A. Static motion plan

We observed that the robot completely failed to extract
the piece of debris. In most of the attempts the error in
accuracy from the object detection algorithm affected the robot
motion. In situations where the object detection algorithm was
accurate, the error in kinematics and motion of the robot led to

failure in accomplishing the task. Since we could not get the
robot to grab the piece of debris, the accuracy and completion
time was not evaluated.

B. Dynamic motion plan with loose coupling

The inclusion of visual servoing greatly improved the ability
of the robot in extracting the piece of debris. The errors in
object detection and robot kinematics were compensated by
the visual servoing. In situations where the robot moved from
its initial configuration for balance, the visual servoing failed
because the effect of change in the robot head was neither
being observed nor accounted for. This causes the robot to
perturb the piece of debris before grabbing. This is visible
in Fig. 10 shows that compared to the tightly coupled visual
servoing, loose coupling has more position and orientation
error and is thus less accurate. The additional time that is
required for correcting these perturbations make this approach
slightly slower (Table I).

C. Dynamic motion plan with tight coupling

There was better alignment and accuracy in the robots
extraction attempts. This was because the motion of the robot’s
body was observed by visual SLAM and was compensated
during visual servoing. There were still failures due to delay
in updates from the SLAM. There are cases where the position
of the debris infront of the robot make the inverse kinematics
solutions to be unstable for the robot.

Fig. 10: The accuracy is measured in terms of RMS error: red
- The RMS error in loosely coupled visual servoing. blue -
The RMS in tightly coupled visual servoing. T x, T y, T z
are transnational errors measured in cm2 and R x, R y, R z
are orientation errors measured in degree2.

VIII. CONCLUSION AND FUTURE WORK

For a static plan to work in a dynamic robotic system there
is a need for very accurate observation of the environment
and accurate prediction of the motion plan. It is possible
to overcome these drawbacks by using a dynamic planning



model that couples perception and manipulation. Even though
a loosely coupled motion plan performs better than a static
motion plan, there is a need for tight coupling in dynamic
robots whose configuration changes. We show that SLAM can
be used as a tool for tight coupling between perception and
manipulation in such situations.

This paper reports on results where the robot is dynamic,
but the environment is static. More work needs to be done
on selection of the robot foot placement before grabbing the
debris. Future work will involve more rigorous testing on
dynamic environments to validate the approach. This approach
will be applied to other tasks, including manipulating tools,
walking, opening doors, turning valves, and driving.
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