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Figure 1: Our approach estimates a per-pixel motion conflict probability map (bottom left), which enables differentiation of landmarks
that are associated to the primary motion and those associated to the second motions, as illustrated by the green and blue circles in
the top left figure, respectively. With that, our Multi-motion MC-VIO algorithm tracks both primary and secondary motions. This
enables augmentation of virtual objects attached to either of the motions. In this example, the virtual red car, attached to the primary
motion appears bigger as the user moves closer (top middle and top right). By contrast, the virtual earth, attached to the secondary
motion stays in the same position relative to the user (bottom middle and bottom right).

ABSTRACT

Ubiquitous Augmented Reality requires robust localization in com-
plex daily environments. The combination of camera and Inertial
Mersurement Unit (IMU) has shown promising results for robust
localization due to the complementary characteristics of the visual
and inertial modalities. However, there exists many cases where the
measurements from visual and inertial modalities do not provide
a single consistent motion estimate thus causing disagreement on
the estimated motion. Limited literature has addressed this problem
associated with sensor fusion for localization. Since the disagree-
ment is not a result of measurement noises, existing outlier rejection
techniques are not suitable to address this problem. In this paper,
we propose a novel approach to handle the disagreement as motion
conflict with two key components. The first one is a generalized
Hidden Markov Model (HMM) that formulates the tracking and
management of the primary motion and the secondary motion as a
single estimation problem. The second component is an epipolar
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constrained Deep Neural Network that generates a per-pixel mo-
tion conflict probability map. Experimental evaluations demonstrate
significant improvement to the tracking accuracy in cases of strong
motion conflict compared to previous state-of-the-art algorithms for
localization. Moreover, as a consequence of motion tracking on
the secondary maps, our solution enables augmentation of virtual
content attached to secondary motions, which brings us one step
closer to Ubiquitous Augmented Reality.

Keywords: Visual Inertial Odometry, Camera Pose Tracking, Mo-
tion Conflict, Sensor Fusion, Augmented Reality, Deep Neural Net-
work

1 INTRODUCTION

Ubiquitous Augmented Reality (AR) aims to provide us a seamless,
immersive user experience at anytime, anyplace. To achieve this
goal, an AR system should be capable of robust localization in
everyday environments and enable augmentation of digital content
on the different static and moving coordinate frames in the real
world. However the complexity of the environments pose major
challenges:

1. It is required to robustly track the camera pose in a dynamic
environment where different components in the scene undergo
independent motions. For example, consider a passenger in-
side a moving vehicle (Fig. 2), the motion of objects seen
through the window are defined with respect to the inertial



Figure 2: A passenger inside a car visualizing virtual elements at-
tached to both the inertial coordinate frame and a local coordinate
frame inside the car.

coordinate frame while the motion inside the vehicle is defined
with respect to local coordinate frame. In such a dynamic
environment, we need a coordinate frame aware localization
to ensure robust camera pose tracking.

2. To enable the flexibility in the generation of AR content any-
where in the real world, tracking of the moving objects is
needed. For example, a passenger on a moving vehicle (Fig.
2), would need to see augmented content on the inertial frame
outside the vehicle such as billboards and on the local coordi-
nate frame inside the vehicle such as the table.

Very few studies have been conducted to directly tackle these chal-
lenges, especially the second one, which is very important for Ubiq-
uitous AR in the context of multi-sensory devices.

Over the past few decades, localization technologies (e.g., visual
SLAM) have become increasingly mature [8]. It has also become
widely accepted that by leveraging inertial sensors (IMU), the ro-
bustness of the localization techniques can be significantly improved.
This has led to visual-inertial localization solutions (e.g., Visual-
Inertial Odometry (VIO) [23], Visual-Inertial SLAM [16, 27], etc.
). With the increase in computational power, commercial products
based on visual-inertial localization have started to emerge on smart-
phones, such as ARCore and ARKit, making AR one step closer to
daily usage. However, the majority of state-of-the-art visual-inertial
tracking solutions assume a static environment and handle only
the primary motion consistent with the inertial coordinate frame.
When there are multiple motions in the scene, part of the visual
measurements will disagree with the IMU measurements in terms
of estimated motion, which is called motion conflict. The disagree-
ment in the estimated motions by the sensors is not due to noise but
rather due to the existence of primary motion consistent with the in-
ertial frame and secondary motions consistent with local coordinate
frames in the scene. Under such conditions, existing methods have
very limited capability and performance.

In recent years, some attempts have been made to track the sec-
ondary motions in addition to the primary motion of the camera pose,
such as [5, 38]. Nonetheless, majority of these methods rely on out-
lier rejection schemes that are simple and lack robustness in complex
real-life scenarios, e.g., challenging illumination conditions, moving
object with diverse appearance, etc. More importantly, they typically
disregard the landmarks that are associated with secondary motions,
resulting in the lack of capability to keep track of the secondary
motions [40], which is important for Ubiquitous AR as mentioned
above.

In this work, we propose a novel solution to handle motion con-
flicts. The key technical contributions include

1. a generalized Hidden Markov Model with time-varying states

and associations to formulate the tracking of primary and sec-
ondary motions,

2. the Multi-motion MC-VIO algorithm that is able to track of
the secondary motions via secondary map construction and
management in addition to the primary motion,

3. a method for per-pixel motion conflict detection based on Deep
Neural Networks (DNN) that leverages both visual information
and inertial constraints.

Through both quantitative and qualitative experiments, we show that
our solution (1) delivers significantly higher tracking accuracy and
helps avoid catastrophic tracking failure in case of severe motion
conflict; (2) enables augmentation of virtual contents based on sec-
ondary motions. Our novel approach brings us one step closer to
Ubiquitous AR.

The remainder of the paper is organized as follows. In Section 2,
we briefly summarize the related work. Next, a short background
on motion conflict, notations and terminologies, are provided in
Section 3. The technical details of the secondary map construction
and management are presented in Section 4. It is followed by the
description of epipolar constrained DNN based per-pixel motion
conflict detector in Section 5. Finally, experimental evaluations and
conclusions are presented in Section 6 and Section 7 respectively.

2 RELATED WORK

There have been tremendous amounts of research on visual Simulta-
neous Localization and Mapping (SLAM) [3, 12]. The application
of visual SLAM to enable real-time tracking in AR was initially
demonstrated by Klein et. al. [20]. However, after over 30 years of
research, the robustness of SLAM still needs improvement for its
application to real-life conditions [8]. The use of complementary
sensors such as a camera-IMU pair have shown to improve the ro-
bustness of tracking. Sensor fusion needed for camera-IMU pair
has been demonstrated by either using a filtering approach such as
a multi-state constraint Kalman filter [26] or by using a non-linear
optimization approach such as OKVIS [23]. These sensor fusion
solutions are primarily limited to tracking the motion consistent with
the inertial coordinate frame and fail in dynamic conditions where
the visual and inertial frames are not in agreement. The extension
of SLAM to dynamic environment on devices with multiple sen-
sors still pose many challenges. In this section, we review existing
approaches for SLAM in dynamic environments.

2.1 Outlier Rejection in Tracking
Outlier rejection has been the most common approach to handle
dynamic objects. The basic principle is to identify outliers by us-
ing visual cues (e.g., based on reprojection error) and then reject
matches (typically sparse landmarks) that are not in agreement with
the expected motion. Initial approaches such as Joint Compatibil-
ity Branch and Bound [29] and RANSAC [10] utilized hypothesis
sampling to improve robustness. However, these approaches lead
to erroneous estimation of motion in scenes with very few inliers.
In order to overcome the limitations of RANSAC, Tan et. al. [36]
introduced PARSAC that used prior adapted RANSAC to handle
dynamic scenes. They also introduced online update of keyframe in
dynamic environments to improve robustness of SLAM in small en-
vironments. On the contrary, our approach, performs multi-motion
tracking in larger dynamic environments.

2.2 Multi motion tracking
Structure from motion has been used for multi-body tracking [15,
32, 33]. However, it was computationally expensive and was not
suitable for real-time applications. Extending SLAM, approaches
such as SLAMMOT [38] and SLAMIDE [5] have attempted to
integrate dynamic objects tracking into SLAM. In order to extract
dynamic objects, 3D motion segmentation has been demonstrated



using a number of different approaches such as normalized cuts [34],
optical flow [28] and factorization [37]. Recently, Reddy et al. [30]
presented a real-time multi-body tracking approach that extracted
dynamic objects using motion segmentation and performed tracking
of moving cars along with ego-motion estimation using factor graph
optimization. However, without a fixed reference, it was difficult to
determine which of the multiple motions extracted were consistent
with the motion of the camera. There has been limited work to extend
the visual motion segmentation to exploit the inertial information
available from an IMU.

In order to integrate the dynamic objects into a single estima-
tion problem, the Hidden Markov Model has been proposed [40].
Similar to our approach, Biswas et al. [6] presented an episodic non-
Markovian localization with Variable Dynamic Graph. However,
unlike our approach the episodic non-Markovian localization was
demonstrated on a LIDAR based SLAM and thus did not consider
measurement conflicts that exist in a multi-sensor device. We derive
inspiration from Motion Conflict aware Visual Inertial Odometry
(MC-VIO) algorithm [40] that considers the existence of contradic-
tory visual-inertial measurement intervals. However, the MC-VIO
algorithm was only capable of tracking the primary motion consis-
tent with the inertial coordinate frame of the system. Besides, their
approach for detection of motion conflicts was primarily based on
heuristic and suffered from robustness issue in certain real-world
applications.

2.3 Segmentation and Labelling

DNN, especially deep Convolutional Neural Networks(CNN), have
enabled end-to-end learning for image segmentation tasks, such as
semantic segmentation [2, 24], change detection [1] and instance
segmentation [11]. They have outperformed the traditional methods
that used hand-engineered features in most cases. These deep CNNs
for image segmentation tasks usually have an encoder-decoder style
architecture. The encoder extracts higher dimensional features from
the original image and the decoder produces the outputs that have
a similar resolution as the input. During training, the deep neural
networks are able to learn how to extract visual features that contain
semantic information from each type of object disregarding the
change of scale, orientation, and lighting condition, given the ground
truth multi-class labels. However, applying these methods, which
typically only consider static visual cues (e.g., with a single image)
without any temporal information, to motion conflict detection can
lead to an undesirable outcome.

By contrast, we propose to leverage geometric constraints initial-
ized by the inertial information im addition to the visual information.
Our idea is partly inspired by several recent deep learning based
approaches designed to solve problems that are highly correlated to
geometric constraints, such as stereo matching [19, 25, 41], camera
localization [17,18], object pose tracking [13] and SLAM [39,44]. In
several previous work on stereo matching along this line [25,41], dis-
parities are computed by comparing the encoded features of source
image patch and target image patches from a rectified image pair.
In this case, the DNNs are only used to extract high dimensional
visual features, and the comparison along epipolar line is done either
by another DNN or other approaches. Another way of introducing
geometric constraints in DNNs is through geometric loss functions,
such as reprojection loss [17, 43, 44]. In our approach, instead of
applying geometric constraints outside the network or in the loss
function, we create a customized layer to merge two encoded images
in a way that fulfills the epipolar constraints. Our method combines
the advantages of the encoder-decoder architecture mentioned above
as well as the novel way of enforcing geometric constraints.

To the best of our knowledge we believe this is the first work to
integrate a per-pixel classifier that detects contradictory measure-
ments between an IMU and camera, with SLAM to perform robust
multi-body tracking.

3 MOTION CONFLICT MODEL

SLAM algorithms that fuse visual-inertial measurements for tracking
assume complementary sensor measurements. However, we observe
many conditions where this assumption is violated. Consider the
case of a passenger inside a moving vehicle (Fig. 2). To display
virtual content that is stationary outside the car, we need to perform
tracking of the device S with respect to the inertial coordinate frame
W . However, to display virtual content inside the vehicle we need
to perform tracking of device S with respect to the local coordinate
frame V of the car which is also moving with respect to the inertial
frame. The assumption that inertial measurements are in agreement
with the visual measurements is only valid in the former while
violated in the latter. As described in [40], motion conflict occurs
when the visual sensor disagrees with the IMU in terms of the
estimated motions. We term the motion with respect to the inertial
coordinate frame as primary motion and the motion with respect to
the local coordinate frames as secondary motions. In this section,
we extend the representation laid in [40] to motion conflict in Multi-
motion scenarios.

We modelled a single estimator for both the primary and the sec-
ondary motions experienced by a multi-sensor device. A per-pixel
motion conflict probability map was then used to determine the as-
sociation of measurements to either primary or secondary motions.
Since, feature points on dynamic objects are sparse, the per-pixel
probability map reduced erroneous association of measurements to
motions. By utilizing, the motion conflict probability map visual
observations were classified as being consistent with the inertial co-
ordinate frame W (primary motion) or being consistent with respect
to the local frame V .

The conventional Markovian model for localization assumes a
static world with a single dominant motion and complementary mea-
surements from all the sensors. However, the static assumption
is violated by the multiple independent motions that exist in the
real-world scenarios [6]. Additionally, the measurements from dif-
ferent sensors can be inconsistent with each other [40] as they might
measure different motions. Wisely Babu et al. [40] introduced a gen-
eralized Hidden Markov Model (HMM) with time varying states to
handle sensor disagreements. Similarly, Biswas et al. [6] introduced
the Varying Graphical Network (VGN) to handle independent mo-
tions as short-term dynamics and long-term dynamics. The HMM
with time varying states assumed deterministic start and end of mo-
tion conflict interval, thus requiring a per-frame motion conflict
detector. We have modelled motion conflict in a multi-motion sce-
nario as an HMM with both varying states and associations (Fig. 4).

Similar to existing approaches, the trajectory generated by the
VIO device was modelled based on the HMM. However, based on
the assumptions made on the measurements we have formulated
separate estimators for states outside and within the motion conflict
interval. When there was only one consistent motion observed by
the estimator, the state Xk is represented by the pose, orientation,
velocity and IMU biases of the VIO device [23]. However, during
a motion conflict interval, the primary and the secondary motions
are represented using independent states XW , XVn . Since multiple
moving objects are observed by the camera in the visual frame
during motion conflict interval, multiple secondary motions with
corresponding local coordinate frames can be represented in the
state estimator. The state associated with respect to each secondary
motion was represented as XVn , where n represented the independent
moving object. For simplicity, we have assumed a single secondary
motion in this work.

A Maximum à Posteriori (MAP) criterion optimization was used
to estimate the states of the system. In particular, we minimize
the residuals generated by the IMU observations û and the visual
observations ẑk. Within a motion conflict interval, multiple MAP
criterion optimizations were carried out to estimate the states of
both primary and secondary motions. We used a per-pixel motion



Figure 3: The block diagram of our motion conflict model that consists of a primary motion estimator, a secondary motion estimator as well as a
DNN based per-pixel motion conflict detector. Details are provided in Section 3.
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Figure 4: The Multi-motion MC-VIO was modeled as a Hidden Markov
Model (HMM) with both varying states and associations. The obser-
vations are represented with gray circles and states are represented
with white circles. A per-pixel motion conflict probability map M repre-
sented by white diamond is used to determine the associations.

conflict probability map M to determine the correct association of
the residuals.

X̂W = argmax
XW

k

P(Xm−)P(XW
k−1 | Xm−)P(XW

k | XW
k−1,uk,zk,M)

(1)
X̂Sn

k = argmax
XSn

k

P(Xm−)P(XSn
k−1 | Xm−)P(XSn

k | XSn
k−1,zk,M) (2)

The Markovian assumption that a state Xk depends only upon the
input uk and the previous state Xk−1 is not valid as soon as a motion
conflict emerges. Thus, the latest estimated state before the motion
conflict, denoted as X−m , is forked into the primary motion state esti-
mator XW as well as the secondary motion state estimator XSn . Prior
to the fork, a combined state estimator that ignores the per-pixel
motion conflict probability map M is used. P(Xm−)P(XW

k−1 | Xm−)

and P(XSn
k−1 | Xm−) represent the transition probability from com-

bined state estimator to the primary motion state estimator, and the
secondary motion state estimator, respectively. In an environment
where the landmarks are not stationary, the visual observations can-
not be associated to the appropriate state estimator solely based on

the current state Xk of the system. In addition to the current state,
the motion assoicated with the landmark was also determined. This
association was estimated using the motion conflict probability map
M, which contained a per-pixel probability of disagreement with
respect to the primary motion.

In summary, with the proposed HMM model, we can estimate
both the primary and secondary trajectories. With these trajectories,
we can render virtual objects based on either the estimated primary
motion X̂W or the estimated secondary motions X̂Sn . Notice, that
compared to the previous work [40], a per-pixel motion conflict
probability map M is used as part of the input to HMM in addition
to the visual and inertial observations. Without M, it is not possible
to associate visual measurements to primary motion and secondary
motions.

4 MULTI-MOTION MC-VIO
In this section, we explain the Multi-motion MC-VIO which forms
the backbone of our approach. A block diagram representing the
different modules in our approach is presented in Figure 3.

The per-pixel motion conflict probability map M improves the
estimated primary motion and the secondary motion in two ways.
Firstly, it enables better outlier rejection in the primary motion
estimation. Secondly, it helps determine the visual measurements
that can be used for secondary motion estimation. One of the main
challenges in Multi-motion MC-VIO is to keep the computational
complexity of the algorithm low while performing robust secondary
motion estimation with limited measurements.

The Multi-motion MC-VIO algorithm takes stereo camera im-
ages and corresponding synchronized IMU measurements as input,
although the same principle applies equally to monocular systems.
The motion conflict probability map is provided by our DNN-based
detector presented in Section 5. The trajectory and the parameters of
the VIO device are represented using state W X0:N consisting of the
pose W pWS, orientation qWS, velocity Sv, IMU linear acceleration
and rotational velocity biases ba,bg:

Xk :=
[
W pWS

>
, qWS

>, SvWS
>
, bg

>, ba
>,

W l0
>
, . . . , W ln

>]>
k ∈ R3×S3×R9×R4n (3)

We have assumed that the primary motion is aligned with the
inertial coordinate frame W . Hence the transition from combined
state estimator to the primary motion state estimator XW

k was as-
sumed to be identity. In this work, we have assumed only a single
secondary motion with respect to a local coordinate frame V . The
user explicitly determines the transition from the combined state
to the secondary motion state estimator XSn

k . The assumption of



Figure 5: Our novel Deep Neural Network Architecture that includes an epipolar constrained layer to estimate per-pixel motion conflict probability
map. See Section 5.1 for detailed description.

single secondary motion applies well in practice because typically
the user will specify which secondary moving object (e.g., car, per-
son, animal, etc.) is desired to be augmented on depending on the
application scenario and user needs.

4.1 Primary Motion

Since an identity transformation was assumed between the combined
state and the primary motion, at all times the primary motion of
the system was estimated. The input to the primary state estimator
consists of visual measurements z and IMU measurements u= [ω̃, ã].
The state consists of the following elements:

XW
k :=

[
W pWS

>
, qWS

>, SvWS
>
, b>g , b>a

W l0
>
, . . . , W ln

>]>
k ∈ R3×S3×R9×R4n (4)

A sparse feature based approach similar to [35] was used to con-
vert stereo camera input to visual measurements z. The FAST [31]
feature detector was used to create interest points and the BRISK
descriptor [22] was used for matching interest points. The previ-
ous state estimate W Xk−1 was propagated based on Equation 5 to
estimate the a priori state W Xk.

W ṗ = CWB
Bv

q̇WB =
1
2

Ω (B
ω̃WB−bg)qWB

ṠvWS = (SãWS−ba)+
W g

ḃg = nbg

ḃa =−
1
τ

ba +nba

(5)

The propagation equation took as input IMU measurements (ω̃, ã)
collected in the body frame B. The a priori state was used to guide
the matcher, which generated visual correspondences between im-
ages at two different timestamps (temporal matches) and between
two images at the same timestamp (static matches). These corre-
spondences were used as visual measurements. When sufficient
visual measurements of a landmark were available, triangulation
was performed to initialize the landmark in the state estimator.

Since the primary motion was assumed to be aligned with the iner-
tial coordinate frame, residuals from both the inertial measurements
(Equation 6) and visual measurements (Equation 7) were used.

ek
s (Xk,Xk+1,zk,uk−1:k) =


W p̂k−W pk

2(q̂k⊕qk
−1)

Sv̂k− Svk
b̂gk −bgk

b̂ak −bak

 (6)

ei, j,k
r := zi, j,k−πi(TCBT̂BW

W l j) (7)

Notation wise, the optimized final a posterior states were represented
using ˆ(·). A windowed batch optimization is performed to minimize
the following energy:

J (XW
k ) :=

K

∑
k=1

∑
i

∑
j∈J(k,i)

ei,k, j>
r Wrei,k, j

r︸ ︷︷ ︸
reprojection error

+
K

∑
k=2

ek>
s Wsek

s︸ ︷︷ ︸
prediction error

(8)

4.2 Secondary Motion

When the user initiated tracking of secondary motion, the state XSn
k

was estimated using the visual measurements of landmarks that were
in the secondary map. The state was defined as

XSn
k :=

[
V pV B

>
, qV B

>, V l0
>
, . . . , V ln

>
]>

k
∈ R3×S3×R4n

(9)

The secondary motion estimator was initialized with the state X̂m− ,
which represented the last state before the start of the secondary
motion tracking. To determine if a landmark was associated with
the secondary map, we used the the motion conflict probability map
M (see Section 5). The marginal probability based on all the visual
observations z j of the landmark Li was given by

P(V li | Sn,M) =
N

∑
j

P(z j|li,M)

P(z j)
(10)

If the marginal probability for a landmark was greater than 50%,
we assign the landmark to the secondary map and move all the
associated residuals ei, j,k

r to the secondary motion estimator. We
performed temporal matching of the landmarks in the secondary
map with the current frame to generate additional visual measure-
ments. The generalized P3P [21] was combined with RANSAC
to estimate the pose associated with the secondary map. Finally,



bundle adjustment based on visual residuals was used to estimate
the secondary motion.

J (XSn
k ) :=

K

∑
k=1

∑
i

∑
j∈J(k,i)

ei,k, j>
r Wrei,k, j

r (11)

5 DNN-BASED PER-PIXEL MOTION CONFLICT DETECTION

In the previous approach [40], per-frame motion conflict was de-
tected to adjust the confidence of the VIO system on the visual and
inertial estimates. By contrast, we aim at per-pixel detection of
motion conflict to enable (1) more precise selection of landmarks
for primary motion tracking and (2) tracking of secondary motions
as well as augmentation based on these motions. Barnes et al. [4]
proposed a multi-task deep learning approach to extract the per-pixel
ephemerality mask from a single image to identify and exclude the
outliers, leading to improved performance of VIO systems. How-
ever, based only on a single image, there was strong ambiguity in
differentiating the primary motion from the secondary motions, es-
pecially when the secondary motions dominate the visual signals.
Consequently, the estimator might behave similar to a detector for
common moving objects in the training data (e.g, car, pedestrian,
etc.). For example, when street parked cars are observed, there is a
high chance that the network will give a positive response.

In our approach, we rely on the IMU to provide cues for the
primary motion. With that, we designed an effective DNN that
learnt to detect per-pixel motion conflict probability map guided by
geometric constraints enforced through a novel epipolar constrained
layer (Section 5.2) . In the remainder of this section, we describe
the network architecture, the epipolar constraint layer, followed by a
description of training and testing process.

5.1 Deep Neural Network Architecture
Our DNN is based on an encoder-decoder architecture, as shown in
Figure 5. The encoder-decoder architecture has become very popular
for handling per-pixel labelling, segmentation tasks [2]. The encoder
block can be used to extract high dimensional features from images
while the decoder block reconstruct the pixel-wise labelling result
from the extracted features. Our encoding block takes two images
(at time t and t+1) as the input, and feeds the encoded features from
both images to the bottleneck layer. Here, we choose a Siamese
network for feature encoding, in which the weights were shared.
This choice was made based on our observation that secondary
motion occurred when there were inconsistencies between the two
images. To reduce the complexity of the network, we have designed
a simple encoding block with five convolutional layers. Each layer
was followed by a batch normalization layer and a ReLU activation
except for the last one. Similar to [25], we removed the ReLU
activation function from the last convolutional layer to keep the
negative values in the feature before the inner-product operations
described in Section 5.2. Four max pooling layers were applied
between the convolutional layers.

In the bottleneck of the network, we have combined two encoded
features using our customized layer as EC to provide epipolar ge-
ometric constraints. This layer guided the network to learn the
inconsistencies between the two input images caused by secondary
motions. In Section 6.2, we compared the network with a simplified
variation, which does not have the epipolar constrained layer, to
validate our network design choices.

The decoding block of our network included five convolutional
layers, as well as four up-sampling layers, which deconvolutes the
output of epipolar constrained layer EC and up-scales it back to the
same width and height as the input images. A 3×3×1 convolutional
layer is applied with sigmoid activation function to generate the
final output M, i.e., the motion conflict probability map with values
between 0 and 1. The details such as the number of features and
kernel size are provided in Figure 5.

5.2 Epipolar Constrained Layer
Our epipolar constrained layer was designed to leverage the inertial
information for the purpose of motion conflict detection. The key
was to utilize epipolar lines which reduce the search dimension of
potential matches from 2D to 1D [14]. The design of our epipolar
constrained layer is illustrated in Figure 6. For each receptive field
Ri, j

t+1 in the encoded feature of image t +1, we computed its inner-
product with the receptive field {Ru,v

t } along the epipolar line L =
{u,v | au+bv+ c = 0} from the other image. The results were then
organized as channels of the correspondent cell ECi, j in the output
layer as follows:

ECi, j = {Ri, j
t+1 ·R

u,v
t | au+bv+ c = 0} (12)

In our implementation, instead of directly feeding inertial frames
or the propagated relative pose between frame t and t+1, we feed
the Epipolar Constrainted Layer with the correspondences between
receptive fields of the two feature map. The main motivation was to
avoid heavy computation involved in directly processing the 6DOF
pose in the Epipolar Constrained Layer that was partly due to com-
putation of fundamental matrix. To compute the correspondences
between receptive fields, we first generate the Fundamental ma-
trix F from intrinsic parameters K and the relative poses R, t by
F = K[t]xRK−1. The intrinsic parameters K comes from camera
calibration and is adjusted to the resolution of receptive fields Rt
and Rt+1. Given fundamental matrix F , the correspondences can
be found along the epipolar line. With the distortion parameter cali-
brated, the correspondences can then be undistorted. The number
of correspondences, which are the output channel of ECi, j , is fixed
to max(Hr f ,Wr f ), where Wr f and Hr f are the width and height of
the encoded features, respectively. Instead of using Bresenham’s
line algorithm approach [7] to sample the receptive fields along the
epipolar lines, we interpolate the inner-product results of the neigh-
bor receptive fields. Zero padding is used when the epipolar line
samples are outside of the boundaries.

The outcome of the epipolar constrained layer is a Hr f ×Wr f ×
max(Wr f ,Hr f ) block. For each new receptive field within the

block, the feature now represents how well the receptive field R[t+1]
i, j

matches to the receptive field at t, provided a rough estimate of
primary motion from the inertial sensor. For the regions in the image
that are consistent with the primary motion, the responses in the
feature ECi, j will be high. In the case of motion conflict, the regions
undergoing secondary motion will exhibit lower responses in the
feature.

5.3 Training and Testing
Our network is trained using a variant of stochastic gradient de-
scent, AdaDelta [42] which automatically adjusts the per-dimension
learning rate. We minimize a pixel-wise binary cross-entropy loss:

min∑
i

∑
j
−ŷi, j log(yi, j)+(1− ŷi, j) log(1− yi, j) (13)

During the testing phase, we predict the per-pixel motion conflict
probability map M for every frame and feed it to the VIO system
throughout the testing sequence.

6 EXPERIMENTAL RESULTS

All our experiments were carried on real-world datasets collected
using a visual-inertial device consisting of a stereo camera pair and
a hardware-synchronized IMU. In the rest of this section, we first
describe the training data for our DNN-based motion conflict detec-
tor, and then present both quantitative and qualitative analysis of the
per-pixel motion conflict probability map, as well as the resultant
trajectories of the Multi-motion MC-VIO. Finally, augmentation
results using the trajectories generated by the primary and secondary
motions estimator have been presented.



Figure 6: Illustration of our novel epipolar constrained layer and how it
interacts with other layers in the network. See Section 5.2 for more
details.

6.1 Training Data for Motion Conflict Detector
Due to the lack of existing VIO dataset that contains large variations
of secondary motions, we built our training and testing sets based
on the data captured in a previous work [40]. This dataset consists
of five sequences, in total around 2400 seconds of visual-inertial
data captured in both indoor and outdoor environments. The training
set includes 80% of the three indoor sequences and one outdoor
sequence (around 1623 seconds); while the testing set contains one
outdoor sequence which is a driving scenario and the remaining
20% of the indoor sequences. The ground truth per-pixel motion
conflict probability map is manually labelled with a semi-automatic
interactive tool.

6.2 Evaluations of Motion Conflict Detector
Our motion conflict detector network was implement based on
Keras [9] using an NVIDIA Tesla K40 GPU. The results were gener-
ated based on the model trained after 100 epochs with 1000 batches
per epoch and a learning rate of 0.001. Although our motion conflict
detection was per-pixel, we first conduct comparisons on per-frame
level as no previous approach generates per-pixel result. In order to
do so, the per-pixel responses were aggregated to generate an indica-
tor for each frame. In the second part, we show the performance of
our per-pixel detection result. In order to demonstrate the benefit of
our epipolar constrained layer, in both parts, we have compared it
with a baseline method, named Visual features only DNN detector,
which takes only one image input without the epipolar constrained
layer.

The comparison of per-frame detection results in the form of
receiver operating characteristic curve (ROC) are shown in Fig-
ure 7. In particular, we compare against the previous state-of-the-art
method [40], as well as the baseline method. The results indicate
that just by aggregating the per-pixel responses, our network with
the epipolar constrained layer can be easily converted to a robust
per-frame motion conflict detector that performs better than [40].
In addition, our method largely outperforms the baseline method,
which validates the benefit of our epipolar constrained layer.

For the per-pixel detection, we also plot ROC curves and compare
against the baseline, as shown in Figure 8. Again, our network with
epipolar constrained layer performs much better, further validating
our hypothesis that the performance of motion conflict detection
can be improved by enforcing geometric constraints. For qualitative
evaluation, we have visualized the predicted and ground truth masks
on the testing sequence in Figure 9. From the second and third row,
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Figure 7: ROC curves on per-frame motion conflict detection. Three
approaches are compared: a previous state-of-the-art [40], a baseline
method (without geometric constraint) and our approach. Overall, our
method achieves the best performance.

we can see that our prediction is very close to the ground truth. In
the second row, we can see that the estimation can be less accurate
in black regions (lower left part) where the visual cues do not deliver
very useful information. On the other aspect, our network is fairly
robust in the cases where no motion conflict happens (the first and
the last row). There are also certain cases where our network was
not able to correctly predict the motion conflicts. Some examples
are shown in Figure 10. The errors may be caused by the visual
inconsistencies along the epipolar line generated from changes in
light condition and reflective surfaces, e.g., sudden change in image
exposure as seen in the first row.

6.3 Evaluation of Resultant Trajectories
The ultimate goal of the visual-inertial system is to deliver robust
tracking. Here we provide both quantitative and qualitative analy-
sis of the accuracy of the resultant trajectory corresponding to the
primary motion. We compare the performance of the reference
VIO [23], MC-VIO [40] and our Multi-motion MC-VIO on three
different test sequences. Two of them are sketched in Figure 11.
The first row (case 1) shows the case where a user carrying the VIO
device makes three loops around a corridor while being obstructed
by a moving pedestrian. The last row (case 2) corresponds to a pas-
senger carrying the VIO device while the vehicle makes two loops
around the parking lot. Some representative pictures are shown in
the middle row.

For qualitative comparison, the resultant trajectory is overlaid
on the corresponding 2d map in Figure 11. In both sequences, we
observe that the Multi-motion VIO produces a resultant trajectory
where the operator returns to the same starting point. By comparison,
the reference VIO suffers from catastrophic tracking failures in both
cases. The MC-VIO also has the same problem for case 1. The
results clearly show that our algorithm produces more consistent
trajectory than both the reference VIO and MC-VIO in environments
with motion conflict.

To conduct quantitative comparison, we compare the results of
these approaches against a baseline trajectory, due to lack of ground
truth. The resultant trajectories that are generated by the reference
VIO [23] with ground truth secondary motion labelling results are
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Figure 8: Quantitative comparison of per-pixel motion conflict de-
tection between our method and the baseline approach, where no
geometric constraint is used. The superior result of our method shows
the effectiveness of our epipolar constrained layer.

considered as the baseline. By comparing to this baseline trajectory,
how well each of the method handles the motion conflict can be
quantified. Comparisons of the absolute tracking error (ATE) and
relative pose error (RPE) are presented in Table 1, which demon-
strates significant improvement of our approach compared to the
alternatives.

6.4 Augmentation on Multiple Motions
As mentioned in Section 1, in Ubiquitous AR, the user should be
able to augment digital content on almost anywhere in the real
world. To showcase that our method is one step further in enabling
such feature, we present augmentation results based on the resultant
trajectory generated by our Multi-motion MC-VIO in Figure 12. In
this example sequence, the passenger carries the VIO devices while
the vehicle is in motion. We augment a red virtual car attached to the
primary motion of the VIO device and a virtual earth rendered inside
the vehicle attached to the secondary motion. As the car moves, the
red virtual car that is fixed to the world frame will become closer to
the camera; while the virtual earth will remain roughly in the same
size and move consistently with the car. Our results in Figure 12
show visual effects that are consistent with this expectation. We
can conclude that our Multi-motion MC-VIO enables successful
tracking of both the primary and the secondary motions in real-

Table 1: Evaluation of Multi-motion MC-VIO (Ours) in comparison with
two state-of-the-art methods on datasets with clear motion conflict,
using the baseline trajectory as ground truth.

Dataset ATE [m] RPE [m/s]
OKVIS MC-

VIO
Ours OKVIS MC-

VIO
Ours

Seq1 4.979 4.681 0.568 0.052 0.047 0.018
Seq2 4.873 6.391 0.142 0.052 0.051 0.010
Seq3 27.22 2.740 1.932 0.252 0.065 0.029
mean 12.35 4.604 0.881 0.119 0.054 0.019
std 10.51 1.492 0.763 0.094 0.008 0.008

Figure 9: Qualitative evaluation of our estimated motion conflict prob-
ability map (right column) against the ground truth (middle column),
where we overlay the mask on the original image (left column). For
our results, the jet color scheme is used for visualization. The four
rows represent different timestamps of a sequence, where motion
conflict happens in the second and the third rows, but not in the first
and the last rows. See Section 6.2 for analysis.

Figure 10: Examples where motion conflict detection failed. From
left to right: captured image, ground truth motion conflict labelling,
predicted motion conflict probability map. The error might be caused
by inconsistency of visual information between two input images,
which is also a common challenge for other vision problems including
stereo matching.

world conditions.

7 CONCLUSION

In the paper, we aim to address the motion conflict problem dur-
ing visual-inertial tracking and mapping for Ubiquitous AR. We
proposed a novel HMM-based motion conflict model which can
properly formulate the state and association changes caused by sec-
ondary motions during VIO. Based on the model, we developed the
Multi-motion MC-VIO algorithm that includes a novel DNN-based
per-pixel motion conflict detector. The key to our detector is a novel
epipolar constrained layer that enforces geometric constraints based
on a rough estimation of primary motion using IMU measurements.
Given the motion conflict probability map, our Multi-motion MC-
VIO algorithm is able to track and manage the secondary motion
along with the primary motion. Our experimental results demon-
strate that our Multi-motion MC-VIO significantly outperforms the
previous state-of-the-art algorithm for localization on datasets that
include severe motion conflicts. Additionally, with the tracked sec-
ondary map, our solution enables augmentation of virtual objects to
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Figure 11: Resultant primary motion trajectories comparing OKVIS [23], MC-VIO [40] and our Multi-motion MC-VIO on indoor (1) and outdoor
datasets (2) are presented. Representative images during motion conflict intervals that caused failures of OKVIS algorithm are presented in a and
b. Similarly the representative images for MC-VIO algorithm with per-frame motion conflict are presented in c and d. Their corresponding locations
on the trajectory are also marked with a, b, c, and d, respectively. Apparently, our Multi-motion MC-VIO based on the per-pixel motion conflict
detection achieves the best performance. The OKVIS algorithm suffers from catastrophic failure in both cases, so does MC-VIO on the first case
(see the parts of trajectories pointed with red arrows). For the second case, the MC-VIO algorithm shows much larger error (the two loops do not
overlap). In both cases, our algorithm delivers much better trajectories.

Figure 12: Augmentation based on the primary and secondary motions. The top row contains the features tracked for primary motion estimation
(green) and features tracked for secondary motion estimation (blue). The majority of the features are correctly classified based on our motion
conflict detection results. The middle row contains a virtual red car rendered based on the primary motion (i.e., parked on the road). The bottom
row contains a virtual earth rendered on the secondary motion (i.e., attached inside the car). Intuitively, as the car moves forward, the virtual
car should appear larger; while the virtual earth should move along with the car and stay in the same size. Our visual rendering matches this
expectation, demonstrating the capability of our solution to track both primary and secondary motions.



both primary motion and secondary motion without any high-level
semantic cues, making it one step closer to the ultimate goal of
Ubiquitous AR.

There are certain limitations to our approach. The secondary
motion estimator is affected when there is a lack of distinct visual
features, leading to degradation of the resultant trajectory. More-
over, our implementation does not contain loop closures that can
help improve the accuracy of the system. So far, our DNN is only
trained and tested in a relatively small dataset (in terms of number
of images, variations of motion conflicts, etc.). In the future, more
extensive evaluations need to be conducted to analyze potential prob-
lems (e.g., over-fitting) and better understand the limitation of the
method. Additionally, the epipolar constrained layer has limitations
when dealing with reflective materials and drastic exposure changes.
Nonetheless, with our current solution that has demonstrated ma-
jor improvements over the existing work, we hope to inspire more
studies along this line towards Ubiquitous AR.
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